

MASS, MASSV & ESSL 4.3

MASS and MASSV

- Three libraries provide elementary math functions:
 - C/Fortran intrinsics
 - MASS/MASSV (Math Acceleration Subroutine System)
 - ESSL/PESSL (Engineering Scientific Subroutine Library
- Language intrinsics are the most convenient, but not the best performers

The Elementary functions included...

- MASS
 - sqrt, rsqrt, exp, log, sin, cos, tan, atan, atan2, sinh, cosh, tanh, dnint, x**y
- MASSV
 - cos, dint, exp, log, sin, log, tan, div, rsqrt, sqrt, atan

Comparison of standard lib and MASS intrinsic functions

Function	Sum from libm.a	Clock- cycles	Sum from libmass.a	Clock- cycles
sqrt	3.34427772158389e+11	159.0	3.34427772158389e+11	40.0
rsqrt	9.88776148452464e+01	189.0	9.88776148452464e+01	35.0
ехр	2.22314235567424e+26	177.0	2.22314235567424e+26	65.0
log	1.10235345203187e+08	306.5	1.10235345203187e+08	95.0
sin	7.61032543425560e+04	217.6	7.61032543425560e+04	75.4
cos	1.81730644467472e+05	200.5	1.81730644467472e+05	73.4
tan	-6.62879483877644e+06	307.5	-6.62879483877644e+06	90.1
Atan	-2.53424519590047e+05	207.6	-2.53424519590047e+05	120.9
sinh	2.79285108669777e+24	273.4	2.79285108669777e+24	76.0
cosh	1.88661487104410e+26	244.6	1.88661487104410e+26	71.0
atan2	-7.56021669449783e+02	398.2	-7.5602166944978 2 e+02	141.6
pow	3.72981324493266e+29	627.1	3.72981324493266e+29	171.0

Comparison of libm and MASSV functions

Libm function	Sum	Clock- cycles	MASSV function	Sum	Clock- cycles
div	2.35022308885783e+07	29.1	vdiv	2.35022308885783e+07	5.5
div	3.82109600477247e-03	29.0	vrec	3.82109600477247e-03	4.1
dsrt	3.30047180089010e+11	159.1	vsqrt	3.30047180089010e+11	11.2
rsqrt	9.83390477971166e+01	189.0	vrsqrt	9.83390477971166e+01	6.5
cos,sin	4.950000000000000e+06	429.6	vsincos	4.95000000000000e+06	57.7
Sin	-1.16545301554582e+05	217.9	vsin	-1.16545301554582e+05	32.2
Cos	-5.20893404460221e+04	203.7	vcos	-5.20893404460221e+04	32.1
Ехр	3.31109589135987e+26	177.1	vexp	3.31109589135987e+26	18.9
log	1.08946996172333e+08	308.0	vlog	1.08946996172333e+08	20.7

Libm, MASS and MASSV

- No discernable difference in result
 - Exception: atan2 difference in 14th significant place between libm & MASS

What are ESSL and Parallel ESSL?

- The Engineering and Scientific Subroutine Library (ESSL) family of products is a state-of-the-art collection of mathematical subroutines.
- Running on IBM Power servers and clusters, the ESSL family provides a wide range of high-performance mathematical functions for a variety of scientific and engineering applications

What Products are available?

- ESSL 4.3 contains over 500 high-performance serial and SMP mathematical subroutines tuned for Power4, Power4+, Power5, Power5+, Power6, PPC 970 and PowerPC 450 processors
- Parallel ESSL 3.3 contains over 125 high-performance SPMD mathematical subroutines specifically designed to exploit the full power of clusters of Power servers connected with a high performance switch
- Parallel ESSL is NOT available on Blue Gene

What Operating Systems are supported?

- **ESSL 4.3**
 - ▶ AIX 6.1
 - ▶ AIX 5.3
 - ▶ AIX 5.2
 - > SLES10
 - RHEL5

What ESSL Libraries are Available?

- Thread-Safe Serial and SMP Libraries
 - 32 bit integers/32 bit pointers
 - 32 bit integers/64 bit pointers
 - ▶ 64 bit integers/64 bit pointers
- BG/P Serial and SMP Libraries
 - 32 bit integers/32 bit pointers

What mathematical areas are supported?

- ESSL
 - Linear Algebra Subprograms
 - Matrix Operations
 - ▶ Linear Algebraic Equations
 - Eigensystems Analysis
 - Fourier Transforms, Convolution & Correlation & Related Computations
 - Sorting & Searching
 - Interpolation
 - Numerical Quadrature
 - Random Number Generation

What applications are supported?

- Callable from FORTRAN, C, and C++
- 32-bit integer, 32-bit pointer application support
- 32-bit integer, 64-bit pointer application support
- 64-bit integer, 64-bit pointer application support (ESSL Only)
- SMP Libraries are OpenMP based
- BLAS and Parallel BLAS Compatibility
- LAPACK and ScaLAPACK Compatibility

What do you get?

- ESSL
 - ▶ Libraries
 - ▶ Header File for C and C++
 - Manpages
 - Guide and Reference (Internet)
 - Install Guide (Internet)
 - ▶ Installation Verification Programs

How do you use ESSL?

- Create a source program or change an existing source program to call ESSL subroutines
- Compile the program
- Correct compiler-detected user errors
- Link-edit, load, and run the program
- Debug the program to isolate run-time errors
- Validate the program against test data
- Change the program and/or compiler options to improve performance
- Run the final version of the program to do work

What techniques are used to obtain high performance?

- SMP Algorithms
- SIMD Algorithms (e.g., VMX, BG/P PPC450D)
- Block Algorithms
 - Data Reuse (Data Caches and TLB)
- Data Prefetching
- Minimize Stride
 - If enough computations, copy to temporary space if used more than once
- Loop unrolling in computational kernels
 - Fully utilize the 2 Floating-Point Units, 2 Load-Store Units, and Floating-Point Registers
 - Careful scheduling of loops to avoid pipeline stalls

How usable are ESSL and Parallel ESSL?

- Easy to Use Call Interface
 - Fortran oriented but header file provided to assist C and C++ users
 - Dynamic allocation of work space
- Easy to obtain high performance
 - Replace key computational kernels with calls to math subroutines. As applications are run on new platforms simply relink to obtain high performance
 - Obtain high performance on SMP processors by relinking serial applications with ESSL SMP (Open MP) Library
- Informative and Flexible Error Handling
 - Messages are readily understandable reference material not required
 - Single comprehensive message when all MPI tasks detect the same error
- Comprehensive Documentation
 - HTML, PDF and manpages available on the Internet
 - Quickly retrieve information
 - Organized according to the tasks performed
 - Readable by a wide class of users
- Easy to Install and Service

What about Migration?

- Long History of easy migrations
 - Customer applications almost always migrate to new releases and versions with no source code changes
 - Customer applications migrate to new hardware with no source code changes
- New XLF and VAC Compilers supported when they GA
- New AIX Operating System releases supported at GA (ESSL)

What's new in ESSL 4.3?

- POWER6
- Serial and SMP Libraries with 64 bit ints/64 bit ptrs
- VMX Support on Power6 and JS21
- 29 New LAPACK Subroutines
- RHEL5
- BlueGene/P Serial and SMP Libraries

What new subroutines are in ESSL 4.3?

- SGECON, DGECON, CGECON, ZGECON
 - Estimate the Reciprocal of the Condition Number of a General Matrix
- SPOCON, DPOCON, CPOCON, ZPOCON
- SPPCON, DPPCON, CPPCON, ZPPCON
 - Estimate the Reciprocal of the Condition Number of a Positive Definite Real Symmetric or Complex Hermitian Matrix
- SLANGE, DLANGE, CLANGE, ZLANGE
 - General Matrix Norm
- SLANSY, DLANSY, CLANHE, ZLANHE
- SLANSP, DLANSP, CLANHP, ZLANHP
 - Real Symmetric or Complex Hermitian Matrix Norm
- CPPTRI, ZPPTRI
 - Positive Definite Complex Hermitian Matrix Inverse
- SGEQRF, CGEQRF, ZGEQRF
 - General Matrix QR Factorization